change of their positional coordinates, have changed their affiliation, thus belonging to another unit.

Conclusion

It follows from this study that the notion of nested polyhedra units is a purely geometrical concept. It should be emphasized that the interatomic distances within a unit are not necessarily shorter than those between units. Further, the nested polyhedra units must not be confused with the coordination polyhedra which are defined around the atoms. This geometric description offers nevertheless great advantages for structures with high symmetry. As each polyhedron is formed by atoms from one equipoint, it is possible to find rapidly the type of polyhedron, as well as its centre, from the atom coordinates. Further, since all the nested polyhedra are simple and have the same centre, the structure can be visualized and memorized more easily than from descriptions based on arrangements of smaller polyhedra sharing vertices, edges and/or faces. The nested polyhedra concept can thus be useful to describe in a condensed way, and to compare, apparently complicated cubic structures containing a large number of atoms in the unit cell.

This study was supported by the Swiss National Science Foundation under project No. 2.250-0.79.

References

Arnberg, L., Jonsson, A. \& Westman, S. (1976). Acta Chem. Scand. Ser. A, 30, 187-192.

Arnberg, L. \& Westman, S. (1978). Acta Cryst. A34, 399-404.
Booth, M. H., Brandon, J. K., Brizard, R. Y., Chieh, C. \& Pearson, W. B. (1977). Acta Cryst. B33, 30-36.
Bradley, A. J. \& Jones, P. (1933). J. Inst. Met. 51, 131-162.
Brandon, J. K., Pearson, W. B., Riley, P. W., Chieh, C. \& Stokhuyzen, R. (1977). Acta Cryst. B33, 10881095.

Brown, P. J. (1957). Acta Cryst. 10, 133-135.
Calvert, L. D. \& Rand, C. (1964). Acta Cryst. 17, 1175-1176.
Chabot, B., Cenzual, K. \& Parthé, E. (1980a). Acta Cryst. B36, 7-11.
Сhabot, B., Cenzual, K. \& Parthé, E. (1980b). Acta Cryst. B36, 2202-2205.
Chieh, C. (1979). Acta Cryst. A 35, 946-952.
Florio, J. V., Rundle, R. E. \& Snow, A. I. (1952). Acta Cryst. 5, 449-457.
Fornasini, M. L., Сhabot, B. \& Parthé, E. (1978). Acta Cryst. B34, 2093-2099.
Oberteuffer, J. A. \& Ibers, J. A. (1970). Acta Cryst. B26, 1499-1504.
Samson, S. (1954). Nature (London), 173, 1185-1186.
Samson, S. (1972). Acta Cryst. B28, 936-945.
Stokhuyzen, R., Chieh, C. \& Pearson, W. B. (1977). Can. J. Chem. 55, 1120-1122.

Westgren, A. (1933). Jernkontorets Ann. pp. 501-512.
Westin, L. \& Edshammar, L. E. (1971). Acta Chem. Scand. 25, 1480-1481.
Yurko, G. A., Barton, J. W. \& Parr, J. G. (1959). Acta Cryst. 12, 909-911.
Zalkin, A. \& Ramsey, W. J. (1958). J. Phys. Chem. 62, 689-693.

Acta Cryst. (1981). A37, 11-17

The Related Structures of α - $\mathbf{M n}$, Sodalite, $\mathrm{Sb}_{2} \mathbf{T l}_{7}$, etc.*

By Harry Nyman \dagger and B. G. Hyde
Research School of Chemistry, The Australian National University, PO Box 4, Canberra, ACT, Australia 2600

(Receired 23 April 1980; accepted 23 June 1980)

Abstract

The sodalite structure can be regarded as a threedimensional framework of corner-connected tetrahedra. By tilting the tetrahedra through various angles

^[* Editorial note: The similarity between this paper and the two preceding papers, by Hellner \& Koch |Acta Cryst. (1981), A37, $1-6 \mid$ and by Chabot, Cenzual \& Parthé |Acta Cryst. (1981), A37, 6-111. has been recognized and they have been published together to give an indication of the activity in the field with which they are concerned. \dagger On leave from Department of Inorganic Chemistry II, Chemical Center, PO Box 740, S-220 07 Lund, Sweden.]

$05677394 / 81 / 010011-07 \$ 01.00$
equivalent frameworks in the structures of $\alpha-\mathrm{Mn}$, sodalite and $\mathrm{Sb}_{2} \mathrm{Tl}_{7}$ are obtained. The complete structures are obtained by filling the large interstices in these frameworks with various atom groups.

Introduction

In an earlier paper (Nyman, Andersson, Hyde \& O'Keeffe, 1978) rather complicated structures, e.g. $\mathrm{VAl}_{10}, \mathrm{~W}_{3} \mathrm{Fe}_{3} \mathrm{C}$ and $\mathrm{Ti}_{2} \mathrm{Ni}$, were described as pairs of simple interpenetrating frameworks. By the same (C) 1981 International Union of Crystallography
method we were also able to show the similarity between those alloy structures and that of the ionic compound pyrochlore. It is possible to relate the previously puzzling structure of $\alpha-\mathrm{Mn}$ to those of sodalite, tetrahedrite and $\mathrm{Sb}_{2} \mathrm{Tl}$, in a similar way.*

An ideal framework of regular, corner-connected tetrahedra

Fig. 1 shows a simple, maximally expanded framework of tetrahedra sharing corners. The symmetry is cubic and the centres of the tetrahedra are at the corners of a space-filling array of truncated octahedra (which means that the voids in the structure, defined by the tetrahedron corners, are polyhedra with 36 corners, the faces of which are triangles, squares and hexagons). Without changing its topology, this array of tetrahedra can be collapsed by rotating tetrahedra around their $\overline{4}$ axes which are parallel to the cell axes, Fig. 1. If the edge length of the regular tetrahedron is d and the rotation angle is a, the unit-cell edge becomes

$$
a=2 d(\cos \alpha+1 / \sqrt{2})
$$

and the parameters of the corners (x, x, z) become

$$
x=\frac{\cos \alpha}{4(\cos \alpha+1 / \sqrt{2})}, \quad z=\frac{\sin \alpha}{4(\cos \alpha+1 / \sqrt{2})} ;
$$

so that $\alpha=\arctan (z / x)$.

Fig. 1. The fully expanded framework of regular tetrahedra. Arrows indicate the rotation of some tetrahedra (about axes parallel to a_{3}) which collapses the structure (cf. Fig. 3). Along each row of tetrahedra with $\overline{4}$ axes parallel to a cell edge, alternate tetrahedra are rotated clockwise and anti-clockwise. Numbers indicate atom heights in units of one hundredth of the projection axis, \mathbf{a}_{3}.

Collapse of the tetrahedral framework

When the tetrahedra are rotated, the framework symmetry remains cubic, but the space group is changed from $\operatorname{Im} 3 m$ (fully opened array of tetrahedra) to $I \overline{4} 3 \mathrm{~m}$. When the rotation angle increases, the cavities shrink and become more and more distorted; at $\alpha=$ 45° they become truncated tetrahedra. This means, as Pauling (1930) pointed out, that the framework is flexible and can therefore accommodate different-sized interstitials, by appropriate rotations of the tetrahedra.

Table 1 lists some compounds which can be described in terms of this kind of (filled) tetrahedral array. In sodalite and similar compounds the symmetry is further lowered to $P \overline{4} 3 n$ due to an ordering of Si and Al, centring the tetrahedra. The tetrahedron array is formed by atoms in the 24 -fold position $24(h), 24(g)$ and 24(i) of the space groups $I m 3 m, I \overline{4} 3 m$ and $P \overline{4} 3 n$ respectively. In calculating the rotation angle α we have assumed regular tetrahedron. Of course, that is not the case: instead they are slightly compressed along the rotation axes (Pauling, 1930). A similar compression (from the regular tetrahedron of the f.c.c. array towards that of a b.c.c. array) along the rotation axes is reported by O'Keeffe \& Hyde (1976) in their paper on cristobalite-related structures.

As can be seen from Table 1, observed values of α range from 0 to more than 45°. Fig. 2 shows the real structure of $\gamma(\mathrm{Mg}, \mathrm{Al})$ (Taketoshi, 1971) where the tetrahedral framework, formed by Mg atoms in position $24(h)$, is fully expanded ($\alpha=0^{\circ}$). The composition range of $\gamma-(\mathrm{Mg}, \mathrm{Al})$ is given as $43-62 \cdot 3$ at. \% of Mg . The ideal composition is $\mathrm{Mg}_{17} \mathrm{Al}_{12}$ but the occupancy of the positions given by Taketoshi gives the composition $\mathrm{Mg}_{13} \mathrm{Al}_{14}$. In Fig. 3 the Re atoms in one of

Fig. 2. The structure of γ - $(\mathrm{Mg}, \mathrm{Al})$. In the lower left- and right-hand corners units of only slightly distorted f.c.c. structure (part of the interpenetrating structure) are shown.

Table 1. The x and z parameters of the atoms in the 24 -fold positions forming the tetrahedral framework

Compound	x	z	$a\left(^{\circ}\right.$)	$a_{c}(\AA)$	$a_{o}(\AA)$	Reference
Ideal I	0. 1464	0	0	$3.414 d$	-	
Ideal II	1	$\frac{1}{8}$	45	$2.828 d$	-	
Ideal III	0	0.354	90	$1.414 d$	-	
$\mathrm{Sb}_{2} \mathrm{Tl}{ }_{7}$	0.151	0	0	$3.414 d$	11.618	(a)
$\gamma(\mathrm{Mg}, \mathrm{Al})$	0.159	0	0	$3.414 d$	10.437	(b)
$\alpha-\mathrm{Mn}$	$0 \cdot 14294$	0.03457	$13 \cdot 6$	3.358d	8.911	(c)
$\mathrm{Ti}_{5} \mathrm{Re}_{24}$	$0 \cdot 144$	0.042	$16 \cdot 3$	3.333d	9.609	(d)
$\mathrm{Zr}_{5} \mathrm{Re}_{24}$	$0 \cdot 144$	0.042	$16 \cdot 3$	3.333d	9.645	(e)
$\mathrm{Er}_{5} \mathrm{Re}_{24}$	$0 \cdot 144$	0.042	$16 \cdot 3$	3.333d	11.23	(f)
χ-phase, $\mathrm{Fe}_{36} \mathrm{Cr}_{12} \mathrm{Mo}_{10}$	0.144	0.042	$16 \cdot 3$	$3.333 d$	8.920	(g)
$\mathrm{Cr}_{17 \cdot 4} \mathrm{Co}_{29 \cdot 0} \mathrm{Si}_{11 \cdot 6}$	0.144	0.042	$16 \cdot 3$	$3.333 d$	8.705	(h)
$\ldots \mathrm{Nb}_{14} \cdot 5 \mathrm{Re}_{43} \cdot 5$	$0 \cdot 140$	0.040	15.9	$3.337 d$	9.692	(i)
Binnite, $\mathrm{As}_{4} \mathrm{Cu}_{12} \mathrm{~S}_{13-x}$	$0 \cdot 119$	0.1442	$50 \cdot 3$	2.693d	10.232	(j)
Tetrahedrite, $\mathrm{Cu}_{12} \mathrm{Sb}_{4} \mathrm{~S}_{13}$	$0 \cdot 117$	0.140	$50 \cdot 1$	2.697d	10.24	(k)
Tetrahedrite	0.1152	0.139	$50 \cdot 3$	2.693d	10.398	(l)
Sodalite, $\mathrm{Na}_{4} \mathrm{Al}_{3} \mathrm{Si}_{3} \mathrm{O}_{12} \mathrm{Cl}$	0.1401	0.0615	23.7	$3.246 d$	$8 \cdot 870$	(m)
Hydrosodalite, $\mathrm{Na}_{7 \cdot 1}\left(\mathrm{Al}_{6} \mathrm{Si}_{5.5} \mathrm{H}_{2}\right) \mathrm{O}_{24} \mathrm{Cl}_{0.4}(\mathrm{OH})_{0.7}$	0.1374	0.065	23.8	$3.244 d$	8.887	(n)
Haüynite, $\mathrm{Na}_{3} \mathrm{CaAl}_{3} \mathrm{Si}_{3} \mathrm{O}_{12} . \mathrm{SO}_{4}$	0.136	0.025	10.42	3.381 d	9.06	(o)
Helvite, $(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Zn}){ }_{4} \mathrm{Be}_{3} \mathrm{Si}_{3} \mathrm{O}_{12} \mathrm{~S}$	0.137	0.084	31.51	3.119 d	8.25	(p)
Na -ultramarine, $\mathrm{Na}_{6.86} \mathrm{Si}_{6.35} \mathrm{Al}_{6.08} \mathrm{O}_{26.2} \mathrm{~S}_{2.54}$	0.136	0.025	10.42	3.381 d	9.06	(q)
Li-ultramarine, $\mathrm{Li}_{4 \cdot 86} \mathrm{Na}_{0.86} \mathrm{Si}_{6.33} \mathrm{Al}_{6.08} \mathrm{O}_{26 \cdot 2} \mathrm{~S}_{2.54}$	0.143*	0.056	21.4	$3.277 d$	8.68 8.98	(q) (q)
Ag-ultramarine, $\mathrm{Ag}_{5 \cdot 25} \mathrm{Na}_{2 \cdot 3} \mathrm{Si}_{6 \cdot 2} \mathrm{Al}_{5 \cdot 8} \mathrm{O}_{24} \mathrm{~S}_{1 \cdot 95}$	0.136	0.042	17.2	3.325d	8.98	(q)

References: (a) Stokhuyzen, Chieh \& Pearson (1977); (b) Taketoshi (1971); (c) Oberteuffer \& Ibers (1970); (d) Trzebiatowski \& Niemiec (1955); (e) Kripjakevič, Tylkina \& Savickij (1960); (f) Kripjakevič \& Evdokimenko (1962); (g) Kasper (1954); (h) Gladysevškij, Kripjakevic \& Kuz'ma (1962); (i) Steadman \& Nuttall (1964); (j) Edenharter, Koto \& Nowacki (1971); (k) Avilov, Imamov \& Muradian (1971); (l) Wuensch (1964); (m) Löns \& Schulz (1967); (n) Bukin \& Marakov (1967); (o) Machatschki (1934); (p) Pauling (1930); (q) Podschus, Hofmann \& Leschewski (1936).

* In the original paper (Podschus, Hofmann \& Leschewski, 1936), the atomic parameters are given as angles. The angle given as x parameter for the O -atom position in Li-ultramarine is 51.5° which corresponds to $x=0.143$. In Strukturbericht (1936), the erroneous $x=0.115$ is given.
the two 24 -fold positions of the structure of $\mathrm{Ti}_{5} \mathrm{Re}_{24}$ are depicted, to show an example of an intermediate rotation angle, $\alpha=16 \cdot 3^{\circ}$. In tetrahedrite, Fig. 4, the framework is collapsed beyond $a=45^{\circ}$, which forces some S atoms closer to each other, $3.258 \AA$, than the average S-S distance of $3.663 \AA$.

Interpenetrating structures

If the atoms creating the tetrahedral framework are ignored, the remaining atoms can be thought of as a second structure which interpenetrates the tetrahedral framework.

In the fully open $\gamma-(\mathrm{Mg}, \mathrm{Al})$, the framework cavities are occupied by Mg -centred Al_{6} octahedra surrounded by a cube of Al atoms to form a slightly distorted f.c.c. unit, Fig. 2. These 15 -atom groups surrounding $000, \frac{11}{2} \frac{1}{2}$ are discrete, i.e. not connected to each other.

The structure of $\mathrm{Sb}_{2} \mathrm{Tl}_{1}$, Fig. 5 (Morral \& Westgren, 1934; Stokhuyzen, Chieh \& Pearson, 1977), is very close to that of $\gamma-(\mathrm{Mg}, \mathrm{Al})$. The main difference is a change in the x parameter of position $12(e)$ from $x=$ 0.233 in γ ($\mathbf{M g}, \mathrm{Al})$ to $x=0.3138$ in $\mathrm{Sb}_{2} \mathrm{Tl}_{7}$. This change turns the structure of the interstitial groups from approximately f.c.c. to b.c.c.

In $\mathrm{Re}_{24} \mathrm{Ti}_{5}$, the tetrahedral framework though collapsed still accommodates discrete groups of 17 atoms, this time in the shape of a truncated tetrahedron of twelve Re atoms, centred by a Ti atom and capped on

Fig. 3. One of the two 24 -fold sets of Re positions in the $\mathrm{Re}_{24} \mathrm{Ti}_{5}$ structure, creating a slightly collapsed tetrahedral framework (cf. Fig. 6).
each of its four hexagonal faces by an additional Ti atom. This interpenetrating structure is shown in Fig. 6. The structures of $\pi-\mathrm{Mn}$ and the so-called χ-phase $\mathrm{Fe}_{36} \mathrm{Cr}_{12} \mathrm{Mo}_{10}$ are very similar to the $\mathrm{Re}_{24} \mathrm{Ti}_{5}$ structure. In $\alpha-\mathrm{Mn}$ all 58 atom positions in the unit cell are occupied by Mn atoms, i.e. there are four crystallographically different Mn atoms in $\alpha-\mathrm{Mn}$.

Another way to look at the $\mathrm{Re}_{24} \mathrm{Ti}_{5}$ structure is to take the framework tetrahedra as the central tetrahedra of stellae quadrangulae, which are completed by the Re atoms in the second 24 -fold position. These polyhedra share edges as shown in Fig. 7. To avoid too

Fig. 4. The 'over-collapsed' tetrahedral framework of tetrahedrite. One of the cavities in the framework is outlined at lower right.

Fig. 5. The structure of $\mathrm{Sb}_{2} \mathrm{Tl}_{7}$: the lower right part shows the interpenetrating b.c.c. structure, to be compared with the f.c.c. structure in $\gamma-(\mathrm{Mg}, \mathrm{Al})$ which is inserted at lower left.
close an approach between the closest atoms, e.g. the two labelled 22 in the central part of Fig. 7, the stellae quadrangulae have to be distorted in a way which can be most clearly seen in the right part of Fig. 7. Even so, this distance remains the shortest $\mathrm{Re}-\mathrm{Re}$ distance in the structure, 2.419 compared to $2.878 \AA$ for the edge of a stella quadrangula (cf. $2.761 \AA$ in Re metal).
This array of edge-sharing stellae quadrangulae creates truncated tetrahedra which are occupied by Ti atoms and bisdisphenoids which are empty.

The common description of the sodalite structure is that of the tetrahedral framework (described above) which is collapsed around big Cl -centred Na tetrahedra, arranged as in Fig. 8 (Pauling, 1930). However, these tetrahedra can also be thought of as the central tetrahedra of stellae quadrangulae, and the interpenetrating structure is then an array of corner-

Fig. 6. The remaining part (cf. Fig. 3) of $\mathrm{Re}_{24} \mathrm{Ti}_{5}$: four-capped truncated tetrahedra.

Fig. 7. Some of the edge-sharing stellae quadrangulae in $\mathrm{Re}_{24} \mathrm{Ti}_{5}$. The necessary twist distortion of this polyhedron can be seen on the right-hand side of the figure.
connected stellae quadrangulae, Fig. 9. This second (interpenetrating) structure is the anti-structure of SiF_{4} (Nyman \& Andersson, 1979), with even more regular stellae quadrangulae than in SiF_{4} itself. (In a framework of ideal stellae quadrangulae the parameter $x=\frac{3}{16}$ $\simeq 0.187$, in $\mathrm{SiF}_{4} x=0.165$ and in sodalite the corresponding parameter is $x=0.177$.)

In the closely related haüynite the Cl atoms are replaced by SO_{4} groups, which opens up the tetrahedral framework. Together with their surrounding tetrahedra of (Na, Ca) atoms they can be considered as discrete stellae quadrangulae, Fig. 8, or, by analogy with sodalite, a framework of bigger corner-connected stellae quadrangulae can be constructed as in Fig. 9. In
this case they are more heavily distorted with the parameter $x=0 \cdot 222$. In fact, the distortion makes the polyhedron somewhat closer to a cube, $x=0 \cdot 25$, than to a stella quadrangula, $x=0.187$. The interpenetrating structure is approaching an array of corner-connected cubes like the structure of $\beta-\mathrm{Hg}_{4} \mathrm{Pt}$ (Bauer, Nowotny \& Stempfl, 1953).
In tetrahedrite, which is greatly collapsed, the interstitial part of the structure consists of discrete SCu_{6} octahedra capped on four faces by Sb atoms, Fig. 10 . As mentioned before, the holes of the tetrahedral framework, when fully collapsed, are in the shape of truncated tetrahedra. The SCu_{6} octahedra are oriented in such a way that each of the four Sb caps points

$$
0
$$

8

a_{1}

Fig. 8. Left: the interpenetrating structure of sodalite: big ClNa_{4} tetrahedra. Right: in haüynite the Cl atoms of sodalite are replaced by SO_{4} tetrahedra, the lower right part shows one Na tetrahedron, comparable with the ones in sodalite.

Fig. 9. The framework of stellae quadrangulae in sodalite (left) and haüynite (right).

Table 2. Positions occupied in space groups $\operatorname{Im} 3 m, I \overline{4} 3 m$ and P $\overline{4} 3 n$

Im3m						
	2(a)	12(e)	16(f)	24(h)		
$\mathrm{Sb}_{2} \mathrm{Tl}$,	T1	Sb	Tl	Tl		
γ (Mg, Al)	Mg	Al	Al	Mg		
$\underline{14} 3 \mathrm{~m}$						
	2(a)	8(c)	12(d)	12(e)	$24(g)$	$24(g)$
α-Mn	Mn	Mn	-	-	Mn	Mn
$\mathrm{Ti}_{5} \mathrm{Re}_{24}$	Ti	Ti	-	-	Re	Re
$\mathrm{Zr}_{5} \mathrm{Re}_{24}$	Zr	Zr	-	-	Re	Re
$\mathrm{Er}_{5} \mathrm{Mg}_{24}$	Er	Er	-	-	Mg	Mg
$\mathrm{Nb}_{14.5} \mathrm{Re}_{43} \cdot 5$	Nb	Nb	-	-	$4 \mathrm{Nb}+20 \mathrm{Re}$	Re
$\mathrm{Fe}_{36} \mathrm{Cr}_{12} \mathrm{Mo}_{10}$	Mo	Mo	-	-	$15 \mathrm{Fe}+9 \mathrm{Cr}$	
$\mathrm{Cr}_{17 \cdot 4} \mathrm{Co}_{29 \cdot 0} \mathrm{Si}_{11 \cdot 6}$	Cr	Cr^{2}	-	-	Randomly	(Cr,Co,Si)
$\mathrm{Fe}_{40} \mathrm{Re}_{18}{ }^{\text {* }}$	Re	Re	-	-	$8 \mathrm{Re}+16 \mathrm{Fe}$	Fe
Tetrahedrite	S	Sb	Cu	Cu	S	-
Binnite	S	$6.8 \mathrm{As}+1.2 \mathrm{~S}$	Cu	Cu	S	-
$P \overline{4} 3 n$						
	2(a)	6(c)	6(d)	8(e)	24(i)	
Sodalite	Cl	Al	Si	Na	0	
Hydrosodalite	$0 \cdot 4 \mathrm{Cl}$	AI	5.5Si	$7.1 \mathrm{Na}+0.70 \mathrm{O}$	O	
Haüynite	SO_{4}	Al	Si	Na, Ca	0	
Helvite	S	Be	Si	Mn, Fe	0	
Na-ultramarine	2.54S	6.08AI	6.35Si	6.86 Na	26.20	
Li-ultramarine	2.11S	6.14Al	5.86Si	$4.86 \mathrm{Li}+1.68 \mathrm{Na}$	0	
Ag-ultramarine	1.95 S	5.8Al	6.2Si	$5 \cdot 25 \mathrm{Ag}+2.3 \mathrm{Na}$	0	

towards a hexagonal face of the truncated tetrahedron. This arrangement also results in every Cu atom of the SCu_{6} octahedra acquiring a triangular S_{3} coordination, Fig. 11.

Concluding remarks

By simply varying the rotation angle of the tetrahedral framework to accommodate different sized/shaped

Fig. 10. The interpenetrating part of the structure of tetrahedrite: the SCu_{6} octahedra. In the centre a cage in the tetrahedral framework, surrounding the central octahedron, is also outlined.
interpenetrating structures, several different structures can be described. Table 2 lists some of them together with the corresponding occupancy of the different positions of the structure. Position $12(d)$ of $I \overline{4} 3 m$, which is split into the two sixfold positions 6(c) and $6(d)$ in $P \overline{4} 3 n$, centres the tetrahedra forming the framework. It is unoccupied in the alloy structures.

A similar rotation mechanism, but with a framework of different topology, was recently used for obtaining families of structures related to cristobalites (O’Keeffe \& Hyde, 1976).

Fig. 11. A clinographic projection of the central part of the tetrahedrite structure shown in Fig. 10. The triangular S -atom coordination around every Cu atom is shown.

References

Ageev, N. A. \& Sekhtman, V. Š. (1962). Dokl. Akad. Nauk SSSR, 143, 1091-1093.
Avilov, A. S., Imamov, R. M. \& Muradian, R. A. (1971). Kristallografiya, 15, 716-719.
Bauer, E., Nowotny, N. \& Stempfl, A. (1953). Monatsh. Chem. 84, 692-700.
Bukin, V. I. \& Marakov, E. S. (1967). Geokhimiya, pp. 31-40.
Edenharter, A., Котo, K. \& Nowacki, W. (1971). Neues Jahrb. Mineral. Monatsh. pp. 337-341.
Gladysevškij, E. I., Kripjakevič, P. I. \& Kuz'ma, Yu. B. (1962). Zh. Strukt. Khim. 3, 414-423.

Kasper, J. S. (1954). Acta Metall. 2, 456-461.
Kripjakevič, P. I. \& Evdokimenko, V. I. (1962). Dokl. Akad. Nauk SSSR, 143, 1610-1612.
Kripjakević, P. I., Tylkina, M. A. \& Savickij, E. M. (1960). Izv. Vyssh. Uchebn. Zaved. Chern. Metall. 1, 12-15.
Löns, J. \& Schulz, H. (1967). Acta Cryst. 23, 434-436.
Machatschki, F. (1934). Cent. Mineral. Geol. 1934A, 136.
Morral, F. R. \& Westgren, A. (1934). Sven. Kem. Tidskr. 46, 153.
Nyman, H. \& Andersson, S. (1979). Acta Cryst. A35, 934-937.

Nyman, H., Andersson, S., Hyde, B. G. \& O’Keeffe, M. (1978). J. Solid State Chem. 26, 123-131.

Oberteuffer, J. A. \& Ibers, J. A. (1970). Acta Cryst. B26, 1499-1504.
O’Keeffe, M. \& Hyde, B. G. (1976). Acta Cryst. B32, 2923-2936.
Pauling, L. (1930). Z. Kristallogr. 74, 213-225.
Pauling, L. \& Neumann, E. W. (1934). Z. Kristallogr. 88, 54-62.
Podschus, E., Hofmann, U. \& Leschewski, K. (1936). Z. Anorg. Allg. Chem. 228, 305-333.
Povarennykh, A. S. (1972). In Crystal Chemical Classification of Minerals, Vol. 1, pp. 124 and 350. New York, London: Plenum Press.
Steadman, R. \& Nuttall, P. M. (1964). Acta Cryst. 17, 62-63.
Stokhuyzen, R., Chieh, C. \& Pearson, W. B. (1977). Can.J. Chem. 55, 1120-1122.
Strukturbericht (1936). Vol. 4, edited by C. Gottfried, p. 209. Leipzig: Akademische Verlagsgesellschaft.

Taketoshi, K. (1971). Jpn. J. Appl. Phys. 10, 1311-1328.
Trzebiatowski, W. \& Niemiec, J. (1955). Rocz. Chem. 29, 277-283.
Wuensch, B. J. (1964). Z. Kristallogr. 119, 437-453.

Colour Lattices and Spin Translation Groups. General Case*

By M. Kucab $\dagger \ddagger$
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Head Post Office, PO Box 79, Moscow, USSR

(Received 20 October 1978; accepted 3 June 1980)

Abstract

A method of deriving d-dimensional crystallographic colour lattices with no symmetry conditions on the basis vectors is given. A number of nonequivalent n-colour lattices is evaluated for $d \leq 4$ and any finite n. An application of colour lattices for obtaining spin translation groups is presented. The results for triclinic spin translation groups are compared with those of Litvin [Acta Cryst. (1973), A29, 651-660].

[^1]0567-7394/81/010017-05\$01.00

1. Introduction

Colour groups in crystallography are defined as extensions of classical crystallographic groups. The idea started in the works of Below \& Tarkhova (1956), Indenbom (1959), Niggli (1959) and others (see also Shubnikov \& Koptsik, 1974). Colour groups are of interest in the theory of magnetic crystals, alloys, defect crystals, etc. Magnetic groups have been interpreted in terms of two-colour groups. The generalized magnetic groups called spin groups have been recently introduced in the form of many-coloured groups.

Different types of colour groups, their properties and bibliography have been reviewed by Shubnikov \& Koptsik (1974) and Opechowski (1977). Only P-type colour groups will be considered here. Colour point groups have been derived by Koptsik \& Kotsev (1974a) and Harker (1976). Zamorzaev (1969), (c) 1981 International Union of Crystallography

[^1]: * Presented in part at the 11 th International Congress of Crystallography, 3-12 August 1978, Warsaw, Poland.
 \dagger On leave of absence from Institute of Nuclear Physics and Techniques, University of Mining and Metallurgy, 30-059, Kracow, Poland. All correspondence should be sent to Professor A. Oles at this address.
 \ddagger Deceased I October 1978.

